Article 9214

Title of the article

INTERACTION OF TERAHERZ RADIATION
WITH 3D ARRAYS OF MAGNETIC NANOPARTICLE-FILLED CARBON NANOTUBES 

Authors

Makeeva Galina Stepanovna, Doctor of physical and mathematical sciences, professor, sub-department of radio engineering and radio electronic systems, Penza State University (40 Krasnaya street, Penza, Russia), radiotech@pnzgu.ru
Golovanov Oleg Aleksandrovich, Doctor of physical and mathematical sciences, professor, sub-department of general professional disciplines, Penza branch of the Military Academy of Maintenance Supplies (Penza-5, Russia), golovanovol@mail.ru
Nikolenko Anton Stanislavovich, Applicant, deputy battery commander, Penza branch of the Military Academy of Maintenance Supplies (Penza-5, Russia), nikolants@mail.ru 

Index UDK

537.874.6 

Abstract

Background. The nanocomposites based on the 3D arrays of magnetic nanoparticle-filled carbon nanotubes (MNCNTs) are the advanced materials with interesting and potentially useful properties for future applications in the magnetically tunable devices at the teraherz frequency range. The aim of the present work is to theoretically research the interaction of teraherz radiation with the anisotropic nanostructured materials, based on the 3D arrays of magnetic nanoparticle-filled carbon nanotubes, using mathematical modeling at the electrodynamic accuracy level based on solving the Maxwell's equations, complemented by the Landau-Lifshitz equation.
Materials and methods. The mathematical model of propagation and interactions of teraherz radiation with anisotropic nanostructured materials based on periodic 3D arrays of the of oriented magnetic nanoparticle-filled carbon nanotubes was developed by solving the characteristic equation for determining the wave propagation constants using a computational algorithm determining the conductivity matrix of autonomous blocks with Floquet channels (FABs).
Results. The results of electrodynamic calculation of the real and imaginary parts of complex wave numbers of the fundamental mode of the clockwise, counterclockwise polarized electromagnetic waves and the ordinary, extraordinary modes, propagating in the 3D periodic arrays of the oriented magnetic Co80Ni20 nanoparticle-filled carbon nanotubes depending on the value and orientation of the DC bias magnetic field were obtained at frequency f = 1 THz.
Conclusions. This work demonstrates that the effective permeability of the magnetic nanocomposites based on the 3D arrays of MNCNTs can be forecasted and designed taking into account the real structure (the geometry of array of MNCNTs; the arrangement of intercalated magnetic nanoparticles), opening a path to a new relationship between anisotropic nanostructured materials and CAD at the teraherz frequency range. 

Key words

3D periodic array, magnetic nanoparticle, carbon nanotubes, teraherz frequency range, autonomous blocks, Floquet channels 

Download PDF
References

1. Huang Y., Yin W-Y., Liu Q. H. IEEE Transactions On Nanotechnology. 2008, vol. 7, no. 3, pp. 331–337.
2. Sarto M. S., Tamburrano A., D’Amore M. IEEE Transactions On Nanotechnology. 2009, vol. 8, no. 2, pp. 214–225.
3. Liu Z., Ci L., Kar S., Ajayan P. M., Lu J.-Q. IEEE Transactions On Nanotechnology. 2009, vol. 8, no. 2, pp. 196–203.
4. Ngo Q., Yamada T., Suzuki M., Ominami Y., Cassell A. M., Li J., Meyyappan M., Yang C. Y. IEEE Transactions On Nanotechnology. 2009, vol. 6, no. 6, pp. 688–695.
5. Akinwande D., Nishi Y., Wong H.-S. P. IEEE Transactions On Nanotechnology. 2009, vol. 8, no. 1, pp. 31–36.
6. Lin A., Patil N., Ryu K., Badmaev A., Acro L. G., Zhou C., Mitra S., Wong H.-S. P. IEEE Transactions On Nanotechnology. 2009, vol. 8, no. 1, pp. 4–9.
7. Patil N., Deng J., Mitra S., Wong H-S. P. IEEE Transactions On Nanotechnology.2009, vol.8,no.1,pp.37–45.
8. Zhang M., Chan P. C. H., Chai Y., Tang Z. K. IEEE Transactions On Nanotechnology. 2009, vol. 8, no. 2, pp. 260–268.
9. Gurevich A. G., Melkov G. A. Magnitnye kolebaniya i volny [Magnetic oscillations and waves]. Moscow: Nauka, 1994, 407 p.
10. Golovanov O. A. Radiotekhnika i elek tronika [Radio engineering and electronics]. 2006, vol. 51, no. 12, pp. 1423–1430.
11. Bakhvalov N. S. Chislennye metody [Numerical methods]. Moscow: Nauka, 1975, 632 p.
12. Nikol'skiy V. V. Proektsionnye metody v elektrodinamike. Sbornik nauchnometodicheskikh statey po prikladnoy elektrodinamike [Projection methods in electronics. Collection of methodological articles on applied electrodynamics]. Moscow: Vysshaya shkola, 1977, pp. 4–23.
13. Golovanov O. A., Makeeva G. S. Radiotekhnika i elektronika [Radio engineering and electronics]. 2009, vol. 54, no. 11, pp. 1421–1428.

 

Дата создания: 19.08.2014 10:12
Дата обновления: 02.09.2014 11:37